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What’s happening in SoCs?

Technology: no slow-down in sight!
Faster and smaller transistors: 90→65→45 nm
… but slower wires, lower voltage, more noise!

Design complexity: from 2 to 10 to 100 cores!
Design reuse is essential
…but differentiation/innovation is key for winning 
on the market!
Design space exploration? Validation?

Performance and power: GOPS for MWs!
Performance requirements keep going up
…but power budgets don’t!
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Topology

Single shared bus is
clearly non-scalable
Evolutionary path

“Patch” bus topology

Two approaches
Clustering & Bridging
Multi-layer/Multibus

B

M

M
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Crossbar: critical analysis
No bandwidth reduction 
Scales poorly

N2  area and delay
A lot of wires and a lot of gates in a bus-
based crossbar

e.g.  Area_cell_4x4/Area_cell_bus ~2 for STBus

No locality
Does not scale beyond 10x10!
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NoCs

More radical solutions in the long term

Nostrum
HiNoC
Linkoeping SoCBUS
SPIN
Star-connected on-chip network
Aethereal
aSoC
Spidergon
Mango
Proteo
xpipes
…

CPU

Memory

DSP

Memory

link
switch

network 
interface

CPU
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The “power of NoCs”
Design methodology

Clean separation at the session layer:
1. Define end-to-end transactions
2. Define quality of service requirements
3. Design transport, network, link, physical

Modularity at the HW level: only 2 building blocks
1. Network interface
2. Switch (router)

Physical design aware (floorplan global routing)

Scalability is supported from the ground up
(e.g. no centralized control structures)
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NoCs vs. Busses
Packet-based

No distinction address/data, only packets (but of 
many types)
Complete separation between end-to-end
transactions and data delivery protocols

Distributed vs. centralized
No global control bottleneck
Better link with placement and routing

Bandwidth scalability, of course!
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Building blocks: NI

Session-layer interface with nodes
Back-end manages interface with switches

Front end

Back end

Standardized node interface @ session layer. 
Initiator vs. target distinction is blurred

1. Supported transactions (e.g. QoSread…)
2. Degree of parallelism
3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)
1. Physical channel interface
2. Link-level protocol
3. Network-layer (packetization)
4. Transport layer (routing)

Node Switches
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Building blocks: Switch
Router: receives and forwards packets

NOTE: Packet-based does not mean datagram!

Crossbar

Allocator
Arbiter Output buffers

& control flow

Input buffers
& control flow

QoS &
Routing

Design options:
• Buffering (input, output, virtual channels)
• Switching technique (store and forward, virtual cut-through, wormhole)
• Routing (source-based, destination-based: deterministic, adaptive, randomized)
• Flow control (ACK-NACK, ON-OFF, credit-based)
• Arbitration policy (RR, iSLIP, TDMA, priority)
• Quality of Service (circuit switching, best-effort, priorities)

Data ports
with control flow

wires
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xpipes: context
Typical applications targeted by SoCs

Complex
Highly heterogeneous (component specialization)
Communication intensive

xpipes is a synthesizable, high performance, 
heterogeneous NoC infrastructure

Task1 Task2 Task4

Task3

SB

Task5

P1(T1) P4(T4)

P3(T3) P5(T5)

NI

NINI

NI

L1

Application mapping
(custom, domain-specific)
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xpipes Network Interface
Transaction centric Network protocol

Open Core Protocol (OCP):
End-to-end communication protocol
Independence of request/response phases
Can be tailored to core features
Support for sideband signals (e.g., interrupts)
Efficient burst handling
Supports threading extensions
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xpipes Switch

Crossbar

Allocator
Arbiter

Output Buffering
Dual ported memory bank, purposes:
1. Buffering for performance (tunable area/speed tradeoff)
2. Error recovery on NACK

Tuned for pipelined unreliable links

Flow control: ACK/NACK, 
stall/go, T-Error

2-stages pipeline
High speed (1GHz @ 130nm)
Wormhole switching
Arbitration: fixed priority, RR
Source routing



15

xpipes Packeting Mechanism
Header register (about 50 bits): one for every transaction

OCP
from MAddr, after LUT

Flit decomposition

OCP

Payload register: one for every burst beat

1st beat
of a burst read

Flit decomposition
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xpipes Design Challenges

The fight against latency: multi-hop topologies are 
at a disadvantage

Low number of stages per hop
Overclock the network

Minimize the price for flexibility
Synthesis-aware design
Use specialized leaf cells
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Heterogeneous topologies in SoCs

SoC component specialization leads to the integration of 
heterogeneous cores

Ex. MPEG4 Decoder

Non-uniform block sizes
SDRAM: communication  
bottleneck
Many neighboring cores
do not communicate

Risk of under-utilizing many tiles and links
Risk of localized congestion

On a homogeneous fabric:
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NoC synthesis flow

SUNMAP

Topology
Mapping &
Selection

Synthesis

Simulation

Platform
Generation

xpipes-
Compiler

Power Lib
Floor-

planner

Routing
Function

Area Lib
Topology

Lib

System
config

Application
code

Co-Design

SystemC
code

xpipes
component

Lib
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SUNMAP: Topology Mapping

Optimizes for area, power or delay
within design constraints  
Uses heuristics  to perform mapping 
onto topologies: mesh, torus, 
hypercube, clos and butterfly
Built in floorplanner for area, power 
analysis
Choice of different routing functions
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SUNMAP: Topology Mapping 2

Heuristic approach with several phases:

Initial mapping using a greedy algorithm (from communication graph)

• Compute optimal routing (using flow formulation)

1. Floorplan solution

2. Check area and bandwidth constraints

3. Compute mapping cost

Iterative improvement loop (Tabu search)

Allows manual and interactive topology creation
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System configuration
// In this topology: 8 cores, 8 memories, 4x4 torus
// ----------------------------- IP cores
// name, switch number, clock divider, buffers, type
core(core_0, switch_0,  1, 6, initiator);
core(mem_8,   switch_11, 1, 6, target:0x00);
[…]
// ----------------------------- switches
// name, input ports, output ports, buffers
switch(switch_0,  5, 5, 6);
switch(switch_1,  5, 5, 6);
[…]
// ----------------------------- links
// name, source, destination
link(link0,  switch_0,  switch_1);
link(link1,  switch_1,  switch_0);
[…]
// ----------------------------- routes
// source, destination, hops
route(core_0, pm_8,  switches:0,1,5,6,7,11);
route(core_1, pm_9,   switches:1,5,9,8);
route(core_2, pm_10,  switches:2,6,5,9);
route(core_3, pm_11,  switches:3,2,6,10);
[…]

Specifies
NIs (I/Os, 

clocks, buffers)
switches (I/Os, 

buffers)
links
routes
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xpipesCompiler:
Platform Generation

Creation of a class template for each type of network component based
upon component configuration (I/O ports, buffer sizing)
Hierarchical instantiation of the platform in SystemC

Synthesis view
Simulation view

xpipes-
Compiler

System
config

SystemC
code

xpipes
component

LibTopology
Routing tables
Parameters
(flit width, buffering, …) 
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MPARM Architecture

INTERCONNECTION

ARM ARM INTERRUPT
CONTROLLER

PRI MEM 4 SHARED 
MEM SEMAPHORES

ARM ARM

PRI MEM 3PRI MEM 2PRI MEM 1

STBus, AMBA, xpipes
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MPARM Features
Cycle-accurate environment
Pluggable IP cores and interconnects
Flexible memory hierarchy
Power models for cores and memories
Port of the RTEMS real-time embedded OS
Growing benchmark suite (DES, FFT, JPEG, 
H.263, MPEG…)
Actual functional traffic: real app on real OS 
on real IP core
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NoCs at work: cross-
benchmarking

AMBA AHB Topologies
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Topologies under test
xpipes topologies

Crossbar-like Mesh

P0

P1

P2

P7

M0

M1

M2

M7

A B C

19x19 single switch

P0

M0

P1

M1 M2 M3

M4 M5 M6 M7

A B C

P2 P3

P4 P5 P6 P7
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Benchmark execution time

AHB Shared: 
saturated with 8P
AHB ML: best case 
(full crossbar, no 
arbitration latency)
xpipes: good 
performance due to
available bandwidth, 
despite packeting
latency penalty
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Scalability results

xpipes crossbar scales as AHB ML
xpipes mesh scales almost as well (yet, 
distributed topology!)
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Latency analysis

Reads to shared
memory
Mesh scales a bit 
worse than 
crossbar due to
link congestion and 
more hops
Latency is a target 
for optimization
(but likely not only
in xpipes!…)

Cont ent ion Bench Read Lat ency

0

5

10

15

20

25

30

35

40

2P 4P 8P

Num ber of Processors

Si
ng

le
 R

ea
d 

La
te

nc
y 

(c
yc

le
s)

AHB Shared
AHB M ultilayer
xpipes crossbar – 32 bit
xpipes mesh – 32 bit
xpipes crossbar – 64 bit
xpipes mesh – 64 bit
xpipes crossbar – 128 bit
xpipes mesh – 128 bit



32

Ongoing xpipes optimizations

Improving latency by NI redesign:
latency-effective OCP handshaking
support for multiple clock domains in the 
NI (core 250 MHz / xpipes 1 GHz?), hiding
packetization cycles

Improving latency by flow control 
redesign:

under scrutiny: credit-based, pipelined
start/stop, mixed credit-based + NACK
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Synthesis back-end
Fully synthesizable soft IPs, comparable
with state-of-the art implementations

Switch layout
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xpipes area/frequency
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A 3x4 xpipes mesh with 8 processors and 11 slaves
consumes ~2,6 mm²

0.13 um technology, 4-flit output buffers
Initiator NI:
1 GHz

Target NI:
1 GHz

4x4 switch:
1 GHz

6x4 switch:
875-980 MHz
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xpipes validation

Simulation with functional traffic
(SystemC within MPARM)
Pre-synthesis (Verilog)
Post-synthesis (Verilog + synthesized
blocks)
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Design Space Exploration

Functionally equivalent topologies
(a): crossbar-like. Minimum latency. 0.48 mm², 780 MHz max
(b): more latency, but more frequency headroom. Achieves 
performance parity at 850 MHz (0.42 mm²: -14% area) and a 
10% performance boost at 925 MHz (0.51 mm²)


