
SUNMAP / xpipes:
A NoC Synthesis Flow

Federico Angiolini
fangiolini@deis.unibo.it
Universita’ di Bologna

Srinivasan Murali
smurali@stanford.edu

Stanford University

2

Outline

The need for NoCs
The xpipes NoC
The SUNMAP flow
xpipes simulation in MPARM
xpipes synthesis results

3

What’s happening in SoCs?

Technology: no slow-down in sight!
Faster and smaller transistors: 90→65→45 nm
… but slower wires, lower voltage, more noise!

Design complexity: from 2 to 10 to 100 cores!
Design reuse is essential
…but differentiation/innovation is key for winning
on the market!
Design space exploration? Validation?

Performance and power: GOPS for MWs!
Performance requirements keep going up
…but power budgets don’t!

4

Topology

Single shared bus is
clearly non-scalable
Evolutionary path

“Patch” bus topology

Two approaches
Clustering & Bridging
Multi-layer/Multibus

B

M

M

5

Crossbar: critical analysis
No bandwidth reduction
Scales poorly

N2 area and delay
A lot of wires and a lot of gates in a bus-
based crossbar

e.g. Area_cell_4x4/Area_cell_bus ~2 for STBus

No locality
Does not scale beyond 10x10!

6

NoCs

More radical solutions in the long term

Nostrum
HiNoC
Linkoeping SoCBUS
SPIN
Star-connected on-chip network
Aethereal
aSoC
Spidergon
Mango
Proteo
xpipes
…

CPU

Memory

DSP

Memory

link
switch

network
interface

CPU

7

The “power of NoCs”
Design methodology

Clean separation at the session layer:
1. Define end-to-end transactions
2. Define quality of service requirements
3. Design transport, network, link, physical

Modularity at the HW level: only 2 building blocks
1. Network interface
2. Switch (router)

Physical design aware (floorplan global routing)

Scalability is supported from the ground up
(e.g. no centralized control structures)

8

NoCs vs. Busses
Packet-based

No distinction address/data, only packets (but of
many types)
Complete separation between end-to-end
transactions and data delivery protocols

Distributed vs. centralized
No global control bottleneck
Better link with placement and routing

Bandwidth scalability, of course!

9

Building blocks: NI

Session-layer interface with nodes
Back-end manages interface with switches

Front end

Back end

Standardized node interface @ session layer.
Initiator vs. target distinction is blurred

1. Supported transactions (e.g. QoSread…)
2. Degree of parallelism
3. Session prot. control flow & negotiation

NoC specific backend (layers 1-4)
1. Physical channel interface
2. Link-level protocol
3. Network-layer (packetization)
4. Transport layer (routing)

Node Switches

10

Building blocks: Switch
Router: receives and forwards packets

NOTE: Packet-based does not mean datagram!

Crossbar

Allocator
Arbiter Output buffers

& control flow

Input buffers
& control flow

QoS &
Routing

Design options:
• Buffering (input, output, virtual channels)
• Switching technique (store and forward, virtual cut-through, wormhole)
• Routing (source-based, destination-based: deterministic, adaptive, randomized)
• Flow control (ACK-NACK, ON-OFF, credit-based)
• Arbitration policy (RR, iSLIP, TDMA, priority)
• Quality of Service (circuit switching, best-effort, priorities)

Data ports
with control flow

wires

11

Outline

The need for NoCs
The xpipes NoC
The SUNMAP flow
xpipes simulation in MPARM
xpipes synthesis results

12

xpipes: context
Typical applications targeted by SoCs

Complex
Highly heterogeneous (component specialization)
Communication intensive

xpipes is a synthesizable, high performance,
heterogeneous NoC infrastructure

Task1 Task2 Task4

Task3

SB

Task5

P1(T1) P4(T4)

P3(T3) P5(T5)

NI

NINI

NI

L1

Application mapping
(custom, domain-specific)

13

xpipes Network Interface
Transaction centric Network protocol

Open Core Protocol (OCP):
End-to-end communication protocol
Independence of request/response phases
Can be tailored to core features
Support for sideband signals (e.g., interrupts)
Efficient burst handling
Supports threading extensions

14

xpipes Switch

Crossbar

Allocator
Arbiter

Output Buffering
Dual ported memory bank, purposes:
1. Buffering for performance (tunable area/speed tradeoff)
2. Error recovery on NACK

Tuned for pipelined unreliable links

Flow control: ACK/NACK,
stall/go, T-Error

2-stages pipeline
High speed (1GHz @ 130nm)
Wormhole switching
Arbitration: fixed priority, RR
Source routing

15

xpipes Packeting Mechanism
Header register (about 50 bits): one for every transaction

OCP
from MAddr, after LUT

Flit decomposition

OCP

Payload register: one for every burst beat

1st beat
of a burst read

Flit decomposition

16

xpipes Design Challenges

The fight against latency: multi-hop topologies are
at a disadvantage

Low number of stages per hop
Overclock the network

Minimize the price for flexibility
Synthesis-aware design
Use specialized leaf cells

17

Outline

The need for NoCs
The xpipes NoC
The SUNMAP flow
xpipes simulation in MPARM
xpipes synthesis results

18

Heterogeneous topologies in SoCs

SoC component specialization leads to the integration of
heterogeneous cores

Ex. MPEG4 Decoder

Non-uniform block sizes
SDRAM: communication
bottleneck
Many neighboring cores
do not communicate

Risk of under-utilizing many tiles and links
Risk of localized congestion

On a homogeneous fabric:

19

NoC synthesis flow

SUNMAP

Topology
Mapping &
Selection

Synthesis

Simulation

Platform
Generation

xpipes-
Compiler

Power Lib
Floor-

planner

Routing
Function

Area Lib
Topology

Lib

System
config

Application
code

Co-Design

SystemC
code

xpipes
component

Lib

20

SUNMAP: Topology Mapping

Optimizes for area, power or delay
within design constraints
Uses heuristics to perform mapping
onto topologies: mesh, torus,
hypercube, clos and butterfly
Built in floorplanner for area, power
analysis
Choice of different routing functions

21

SUNMAP: Topology Mapping 2

Heuristic approach with several phases:

Initial mapping using a greedy algorithm (from communication graph)

• Compute optimal routing (using flow formulation)

1. Floorplan solution

2. Check area and bandwidth constraints

3. Compute mapping cost

Iterative improvement loop (Tabu search)

Allows manual and interactive topology creation

22

System configuration
// In this topology: 8 cores, 8 memories, 4x4 torus
// ----------------------------- IP cores
// name, switch number, clock divider, buffers, type
core(core_0, switch_0, 1, 6, initiator);
core(mem_8, switch_11, 1, 6, target:0x00);
[…]
// ----------------------------- switches
// name, input ports, output ports, buffers
switch(switch_0, 5, 5, 6);
switch(switch_1, 5, 5, 6);
[…]
// ----------------------------- links
// name, source, destination
link(link0, switch_0, switch_1);
link(link1, switch_1, switch_0);
[…]
// ----------------------------- routes
// source, destination, hops
route(core_0, pm_8, switches:0,1,5,6,7,11);
route(core_1, pm_9, switches:1,5,9,8);
route(core_2, pm_10, switches:2,6,5,9);
route(core_3, pm_11, switches:3,2,6,10);
[…]

Specifies
NIs (I/Os,

clocks, buffers)
switches (I/Os,

buffers)
links
routes

23

xpipesCompiler:
Platform Generation

Creation of a class template for each type of network component based
upon component configuration (I/O ports, buffer sizing)
Hierarchical instantiation of the platform in SystemC

Synthesis view
Simulation view

xpipes-
Compiler

System
config

SystemC
code

xpipes
component

LibTopology
Routing tables
Parameters
(flit width, buffering, …)

24

Outline

The need for NoCs
The xpipes NoC
The SUNMAP flow
xpipes simulation in MPARM
xpipes synthesis results

25

MPARM Architecture

INTERCONNECTION

ARM ARM INTERRUPT
CONTROLLER

PRI MEM 4 SHARED
MEM SEMAPHORES

ARM ARM

PRI MEM 3PRI MEM 2PRI MEM 1

STBus, AMBA, xpipes

26

MPARM Features
Cycle-accurate environment
Pluggable IP cores and interconnects
Flexible memory hierarchy
Power models for cores and memories
Port of the RTEMS real-time embedded OS
Growing benchmark suite (DES, FFT, JPEG,
H.263, MPEG…)
Actual functional traffic: real app on real OS
on real IP core

27

NoCs at work: cross-
benchmarking

AMBA AHB Topologies

P0 P1 P2 P8

M0 M1 M2 M8

Shared bus Multilayer (crossbar)

A B C

Processors

Private memories Shared slaves

P0

P1

P2

P8

A
H

B
In

te
rC

on
n

ec
t

M
at

ri
x

(I
C

M
)

M0

M1

M2

M8

A

B

C

28

Topologies under test
xpipes topologies

Crossbar-like Mesh

P0

P1

P2

P7

M0

M1

M2

M7

A B C

19x19 single switch

P0

M0

P1

M1 M2 M3

M4 M5 M6 M7

A B C

P2 P3

P4 P5 P6 P7

29

Benchmark execution time

AHB Shared:
saturated with 8P
AHB ML: best case
(full crossbar, no
arbitration latency)
xpipes: good
performance due to
available bandwidth,
despite packeting
latency penalty

8P Bench Completion Time

0

50000

100000

150000

200000

250000

300000

350000

Parallel bench Contention bench

C
om

pl
et

io
n

Ti
m

e
(C

yc
le

s)

AHB Shared
AHB Multilayer
xpipes crossbar – 32 bit
xpipes mesh – 32 bit
xpipes crossbar – 64 bit
xpipes mesh – 64 bit
xpipes crossbar – 128 bit
xpipes mesh – 128 bit

30

Scalability results

xpipes crossbar scales as AHB ML
xpipes mesh scales almost as well (yet,
distributed topology!)

Contention Bench Scalability

90%

100%

110%

120%

130%

140%

150%

160%

2P 4P 8P

Number of Processors

R
el

at
iv

e
C

om
pl

et
io

n
Ti

m
e

AHB Shared
AHB Multilayer
xpipes crossbar – 32 bit
xpipes mesh – 32 bit
xpipes crossbar – 64 bit
xpipes mesh – 64 bit
xpipes crossbar – 128 bit
xpipes mesh – 128 bit

Parallel Bench Scalability

90%

95%

100%

105%

110%

115%

2P 4P 8P

Number of Processors

R
el

at
iv

e
C

om
pl

et
io

n
Ti

m
e

AHB Shared
AHB Multilayer
xpipes crossbar – 32 bit
xpipes mesh – 32 bit
xpipes crossbar – 64 bit
xpipes mesh – 64 bit
xpipes crossbar – 128 bit
xpipes mesh – 128 bit

31

Latency analysis

Reads to shared
memory
Mesh scales a bit
worse than
crossbar due to
link congestion and
more hops
Latency is a target
for optimization
(but likely not only
in xpipes!…)

Cont ent ion Bench Read Lat ency

0

5

10

15

20

25

30

35

40

2P 4P 8P

Num ber of Processors

Si
ng

le
 R

ea
d

La
te

nc
y

(c
yc

le
s)

AHB Shared
AHB M ultilayer
xpipes crossbar – 32 bit
xpipes mesh – 32 bit
xpipes crossbar – 64 bit
xpipes mesh – 64 bit
xpipes crossbar – 128 bit
xpipes mesh – 128 bit

32

Ongoing xpipes optimizations

Improving latency by NI redesign:
latency-effective OCP handshaking
support for multiple clock domains in the
NI (core 250 MHz / xpipes 1 GHz?), hiding
packetization cycles

Improving latency by flow control
redesign:

under scrutiny: credit-based, pipelined
start/stop, mixed credit-based + NACK

33

Outline

The need for NoCs
The xpipes NoC
The SUNMAP flow
xpipes simulation in MPARM
xpipes synthesis results

34

Synthesis back-end
Fully synthesizable soft IPs, comparable
with state-of-the art implementations

Switch layout

0,100

0,120

0,140

0,160

0,180

0 500 1000 1500

Frequency (MHz)

A
re

a
(m

m
²)

Area vs. frequency tradeoff

35

xpipes area/frequency

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45

16 32 64 128

Flit width

Ar
ea

 (m
m

²) Initiator NI
Target NI
4x4 switch
6x4 switch

A 3x4 xpipes mesh with 8 processors and 11 slaves
consumes ~2,6 mm²

0.13 um technology, 4-flit output buffers
Initiator NI:
1 GHz

Target NI:
1 GHz

4x4 switch:
1 GHz

6x4 switch:
875-980 MHz

36

xpipes validation

Simulation with functional traffic
(SystemC within MPARM)
Pre-synthesis (Verilog)
Post-synthesis (Verilog + synthesized
blocks)

37

Design Space Exploration

Functionally equivalent topologies
(a): crossbar-like. Minimum latency. 0.48 mm², 780 MHz max
(b): more latency, but more frequency headroom. Achieves
performance parity at 850 MHz (0.42 mm²: -14% area) and a
10% performance boost at 925 MHz (0.51 mm²)

